
A SIMPLE PROOF OF THE ASYMPTOTIC NORMALITY OF
UNIVARIATE L-ESTIMATES AND APPLICATION

Roberto N. Padua!1 and Kursheed Alam!l*

ABSTRACT

This paper presents a simple proof of the asymptotic normality of L-estimates in the iid
case. It then proceeds to discuss the generalization to the non-iid case. Certain
restrictions have been placed on the weight function to avoid the requirement that the second
moment of the underlying distribution be finit~. An application is given in the regression
setting. The approach taken uses only basic concepts in analysis, specifically, convergence
theorems.
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statistical literature lies mainly on

• 1. Introduction

Interest in L-est imates in the

the

in the literature utilizing only elementary

concepts from calculus. A simple application

of the estimate L is given in the
n

desirable robustness properties that this

class of estimators exhibit. L estimates

are defined as estimates of the fonn:

regression setting.

2. L-Fstimates

n

I..n = L Ci x(i)
i=l

0)
We consider two cases in order, as the

sample values ~re i.i.d. or non-i.i.d.

,
where c i are weights, x o ) < x(2) < ••• <x(n)

are the ordered values of the observat ions Let xl' x 2' ••• , xn be a sample

from a distribut ion F and let x(l)"::'

x(2) ~ • •• < x(n) denote the ordered

values in the sample. A linear funct ion of

the ordered values, given by:

2.1. COmmon ~stribution

distributioncanronfrom ax
n

... ,Xl'
F(.).

M:>ore (968) showed that the asymptot ic

distribution of the properly norma l i zed

(2)

are constants

It is convenient

(2) as:

1 n
-[JI i) ()n. \ n+l x i

1

n
in = [qx(i)

i=l

in=

to write

where c 1 ' c 2' ••• , cn

is called an Lr-es t ima te ,

estimates in the fonn of (1) is nonnal.

showed that Moore's

In this paper, we wi 11 attempt to

establish the asymptotic nonnality of L
n

using basically the idea of Moore (1968) and'

correct ing the flaws in his arguments. Orr

proof is di fferent from other proofs found

lhwever, Stigler (974)

(1968) proof was faulty.

-

where J'(u }, 0 < u < 1 represents a weight
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function.

ci = n

Sare·authors use

lin
f J (u Jdu
i-I
n
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in place of

integrable.

given by:

J( 1 ) assuming that J is
n+l

1he corresponding L-estnnate
Note that, 'iI (0) = 'iI(l) = 0 and 'ii' (u) =

c - J(u). We have •
co co

U = f 'iI( (F(x)dx + c f x dF(x). and
-00 -00

is thus fonnulated as a statistical function,

where F ( .) denotes the sample cdf , It
n

may be noted that

In"

1herefore, '-, ,~

c n
+ n L x(i)

1
nc

+ - L X(· )
n 1 1

1

max IJ( n~l) - n fi~l J(t)dtl =
n

O(n- tl
) , 1 ~ i ~ n By the Mean-Value 1heorem,

A

'iI(Fn(x» - 'iI(F(x» =

Fn (x}, - F(x» ( 'ii' (F(X») + A(Fn (x) - F(x»

if J is Lipschitz of order c •

We now make the following aasumpt i ons ,
-1

Let J be bounded and cont inuous a ,e F

on lil, 1] • Le t 1

f: IF(x) (l) - F(x» Ildx < co • (4)

If F has regularly varying tails then (4)

is equivalent to the condition Elx.12
< co.

In any case, (4) impl ies tha t ~ x. 1
2

< co •
J

(see Feller(1965), section V.6, Lemma 1). Let

lJ2= f:co x J(F)(x»dF(x),

and

(12= r: r: J(F(x»J(F(y»'

(min IF(x), (F(y) - F(x))] F(y) )dxdy

where A (x ) -+ 0 as x -+ O.

Bence ,

A

J(FX» - A(Fn(x) - F(x»dx

Now,

E(';-;; f:co IFn (x) - F(x) Idx 2-
. 1

In f:co ( E(Fn(x» - F(x»2 ) '2dx
1

~ f:co (F(x) u-s (x)) '2dx < co by (4).

Hence,

(6)

.;

'Theorem 1. Let J be bounded and continuous
-1 [ ]a •e • F on 0,1 • If (4 ) i s sa tisfi ed

and 02 > 0, then

;;-(In" -lJ) ~ N(O, ( 2) as n -+ co •

Moreover, by the Glivenko-eantelli 1heorem,

as n -+ co

Sup I Fn(x) - F(x) I wpl) 0 0

Proof: Let -00 < x < 00 ,

1
f 0 J ( t )d t =c , and

1herefore,

Iri' J: (Fn (x) - F (x» x(Fn (x) - F (x» dx~ 0 (7)

1
'iI (u) = f u J ( t )dt - c (l - u},

18

From (6) and (7) it· follows that ';i1(L " - u) •
n



is. as~ptoticallydistributed as:

Z =- In r:co(~(x) - F(x)J(f(x»ax

1 n
=-- I: r:co(Hi (x) - F(x»J(F(x»dx

rt: 1

where

(8)

Theorem 3. Let J be bounded and continuous

a ;e , F-
l

on [O,lJ. If J is Lipschitz of
2

order a (0 < a -c 1), (9) holds and 0 > 0,

then:

v'n(ln" - lJ) ~ N(O, 02) as n -+- co

Proof: From (10) it follows that

A

(F(x) - Fn (x) )J(F(x»dx

Therefore, m(L" - u ) is asymptotically
n

distributed as,

r
co

(F(x» (1-F(x» d x < co._ co

H:lnce, E I Xi I < co • From (5) and the

Lipschitz property of J we have

(In" -lJ) =-In [coco IFn(x) - F(x» .
L (10)

(J(F(x» + 0 (I Fn(x) - F(x) la]dx

Now,

(11 )

-+- 0 as n -+- co

E(m r
co

IFn(x) - F(x) l1+oax)
-co

1+a

~ Ir1 r:
co

~(Fn (x) - F(x»2]2dx

1+a
=rn-a / 2 roo (F(x» (1-F(x»T dx

-co

~
0, for x ~xi

Hi (x) =
1, for x > xi

-1 -1 '
Let ~ = F (a) and n = F (e), 0 < a < a 1.

L 2
frl(L "- u) -+- N(O, 0 ) as n -+- co

n

Theorem 2. Let J be bounded and continuous

a ,e , r l on I 0, 1 ] , such that

By the Central Limi t Theorem, Z is asyrrpto

tically nonnally distributed with mean 0 and
. ...2varlance v

If J puts no, weight on the extreme

observations, then the condition (4) may be

dropped.

J(u) =0 for 0 < u < a and B < u < 1.

24. If ~ and n are uniquely defined and 0 > 0,

then

••• , F
n

denote

Proof: We may substitute f,; and n for the

lower and upper limits, respectively, of the
2

integrals in the definitions of u and c •

With these substitutions the asyrrptotic

convergence of (7) holds without condi tion

(4) •

2.2. Variable Instributions

Let ~' ~' ••• , Xn be independent

random variables with c.d.f. F
l,

F
2,

respectively. Let X(1) ~ ••• ~ X(n)

the ordered sample values. Let
Theorem 2 is useful .in establ ishing the

asymptotic distribution of an L-estimate,

such as the trimmed mean.

If J is Lipschitz of order a , where

o < a < 1, then we may subst i tute for (4)

the weaker condition that

co (1+ a)r_coF (x) (l-F(x» -2- dx < CD

•

1 n
Fn(x) = n I: Fi(X)

i=l

We assume that F (x) tends to a limiting
n

distribution F(x), say, for each x as n -+- co.

Since both F (x) and F(x) are non
n

decreasing in x , the convergence is unifonn

in x, Let
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Fran assumptions (l) and (2) we now have

and so

Since H (x ) , F (x) and F(x) are non-
n n

decreasing in x , the convergence is uni form

- -
III 1:

00
IFn (x) - F(x) [dx

~M + N for sufficiently large n.

m 1:
00

IFn(x ) - F(x) Idx

1
00 - -"2

~ 1_
00

(Fn(x) (1 - F(x» dx +

E{$ 1:'1 ibex) - F(x) [dx ::...;;:

1

/: oo(E{Hn{x) - F(x»2) 2 dx

Assumpt ion 3. As n -+ 00 ,

for each x.

1 n
= - L Hi (x)

n 1
Ib(x)

in x. Hence,

sup 1% (J~) - I 1 (II)- Fn(x) wp) 0
-00 <x < 00

and

supIHn(x) - F(x) IWPl 0 as n -+ 00 •--00 < x < 00

be the sarrple cdf where H. (x) is defined
1

in (8). Clearly, E(H (x) = F (x}, It
n n

follows from the strong law of large numbers

tha t as n -+ 00 ,

~ now need the following assumptions:
-+c

Assumption I. lhere exists a positive number

N, such that, for sufficiently large n,

for same constant c, such tha+ -00 < c < 00 •

Let

Assumption 2. lhere exists a function Q and

posi t i ve nlllTbers ~ and b (0 < b < 1) such

that, 0 ~ Q(x) ~ 1, cF(x) is integrable

and for sufficient ly large n, F (x ) <
n -

Q2(x) for x < -a and 1 - F (x) < Q2(x)
n -

and 1
n n

in" = L (I J(u)du)xi
1 i=l

n

for x > a.

From assumption 2, it follows that there

exists a positive number M, such that

1
00 - - 2"

1_
00

({Fn{x» (1 - Fn(x» dx ~M

for sufficiently large n and that
100 _ __

1_00 (F(x) (l-F(x» 2 dx < 00 • •
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The variance of the i th tenn in the above

.sunna.t ion is equa 1 to

o~ =f~ f~ J(F(x»J(F(y» (min(Fi(x),
1. -~-~

Where,

~ -1 2
S =(2R) b i : IJ (F (x) Idx) b.

Ixl.:: a
Hence,

for

are

F. (x) (1-F. (x)
f 1. 2 1. qP(x) IJ(F(x) Idx+S

Ixl>a Q (x)

If F (x ) + F(x)
n

assl.llTptions 1, 2 and 3x and

~ ~-1
Ely. Ib < (2R) b

1. -

~ -1
< (2R)b f Qb(x) IJ(p(x» [dx + S

Ixl>a

each

for sufficiently large n, by assumption 2,

~ -1 ~
< 2b Ff + s

n
1 2 -2 ( )- L o. + a > 0 14
n 1 1

From (13), it is seen that the Liapounov's

condition for the Central Limit Theorem is

satisfied for the sum (12) if as n + ~.

Theorem 4. Let J be bounded and conti nuous

a . e • F-Ion [0, 1] •

-for same positive number o. Therefore,

1;;- (L" - ~ ) is asymptotically nonnally
n

distributed. Thus~ we have:

in view of assumption 3. Let

Cbrresponding t~ (6), we have:

n
- _1 L f~ (U.(x) .... F(x»J(F(x»dx + C

: In 1 e-co 1.

From (11) and aasurpt ion 2, it follows

that v'i1(L" -~) is asymptoticallyequiva
n

+lent to Z, which in turn is asymptotically

distributed as

- ~

/Il(Ln" - ~) = - In f _~ (1\ (x ) - F(x»

(J(F(x» - H6(x) - F(x»dx (12)

= f (Hi (x ) - Fi (x»J(F(x»dx +
Ixl2.a

J (Hi (x)-Fi (x»J(F(x»dx .

I(-:12.a

As cf(x) is integrable and J is bounded ,

we have R < ~. N:>w,

R = f QP(x) IJ(F(x» Idx and
I}~I >a

22 1 ~

IY . 11)< ~ - [( f IH. (x) - F. (x) IIJ (F (xl ) dx) b +
4 1. - Ixl>a 1. 1.

2

r f IH
i

(x) - F
i

(x) IIH(F(X» dx)~l
Ixl~a 2

2 2 I Ib- -1 - -1 H. (x) - F. (x) b _
< 2b IRP f 1. 2 1. Q (x) \J(F(x)dx +

Ixl<a Q (x)

2

f IJ(F(x» Idx)b I
Ixl<a

2
(H. (x) -F . (xl ) b -

f 1. 2 1. Q (x) IJ(F(x)ldx + S
Ixl.:,a Q (x)

satisfied and (14) holds, then

j~ (Ln - 0) l' N(c, a2)

as n + ~ •

The analogue of Theorem 2 for variable

distributions is given below:

Theorem 5. Let J be bounded and cont inuous
-o- I

a •e. F"" on (a, 8 ) such tha t

J (u) = 0, for 0 < u < a and 8 < u < 1.

If F (x ) - F(x) for each x , the ath and
n

8th quantiles of F(~) are uniquely defined,
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assumptions

(14) holds,

as n + co •

1, 2 and 3 are sat isfied and

then frl(L n - ~ ) + N(c, a2)
n
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Assume that in this rrode l , t. are i i d F(.)
1

where F(.) is assumed symnetric and

the following robust estimate of b:
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] 1

x. - x.
] 1
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(14)

Padua (1986), gave

b* = median
i, je:R

absolutely continuous.

(1, 2, ... , n) taken two at a time and

having no canponent in comnon. In other

words, pair off the data points and then for

each pair canpute the slopes 6
1

••• , b
m

say. COmpute for the median of these slopes.

O1e possible modi.fication of (14) is to

consider estimators of the fonn:

(15)

...
where c i are constants and b

O
) <

b(2) ~ 6(3) < So. b(m)' The slopes
bI , b2, .•. , bm pr?vide m independent

es t imat es 0 f b and so the asyrrpt0 tic

nonnality of the estimator (15) follows from

our previous discussions.
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