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ABSTRACT

This paper presents a simple proof of the asymptotic normality of L-estimates in the iid
case. It then proceeds to discuss the generalization to the non-iid case. Certain
restrictions have been placed on the weight function to avoid the requirement that the second
moment of the underlying distribution be finite. An application is given in the regression

setting. The approach taken uses only basic concepts in analysis, specifically, convergence
theorems. :
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®1. Introduction in the literature utilizing only elementary

Interest in L-estimates in the concepts from calculus. A simple application

statistical literature lies mainly on the of the estimate L is given in the
desirable robustness properties that this regression setting.

class of estimators exhibit. L estimates

are defined as estimates of the form: 2. L-Estimates
n We consider two cases in order, as the
Ln = £ ci x(i) (1) sample values are i.i.d. or non-i.i.d.
i=1
% 2.1, Common Distribution

where c, are weights, x(l) < x(z) <ouo <x(n)

are the ordered values of the observations Let 2 L SR be a sample

. . . <
t SURREEETINE from a comon distribution from a distribution F and let x(1)-—

Ft-)- x(z) < eee < x(n) denote ' the ordered
Moore (1968) showed that the asymptotic values in the sample. A linear function of

distribution of  the properly normalized the ordered values, given by:

estimates in the form of (1) is normal. n

However, Stigler (1974) showed that Moore's In = iEICiX(i) (2)

(1968) proof was faulty.
1’ 2 veoy cn are constants
is called an L-estimate. It is convenient

wheré ¢ c

L In this paper, we will attempt to
establish the asymptotic normality of Lrl

using basically the idea of Moore (1968) and- to write (Z)nas:
. . . 1 i
correcting the flaws in his ts. In = =31 J¢ 2 i
| ng arguments. Qur n’ ) x(1)
proof is different from other proofs found ‘

.

where J(u), 0 < u< 1 represents a weight
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in place of J( 1 ) assuming that J is

nt+l
integrable. The corresponding L-estimate
given by:
1 D
Ip" == I ¢ix(j)
=1

L
foan (t)J(t)dt

is thus formulated as a statistical function,
where ﬁn( +) denotes the sample cdf. It

may be noted that

1
i._. @ _
mx“(m) n fi-l J(t)dtl =
n

0(n~%), 1 <iz<n
if J is

We now make the following assumptions.
1

Lipschitz of order o .

let J be bounded and continuous a.e F

on B).l]. Let 1

2 F&) (1) - Fa)) [&dx <=+ (4)

If F has regularly varying tails then (4)
is equivalent to the condition E|x. |2< © ,
In any case, (4) implies that E X |2< ® o
(see Feller(1965), section V.6, Lemma 1). Let

W= 7 x J(F) (x))dF(x),
and
02= s- 17 T(F(x))I(F(y))-

(min [F(x),(F(y) - F(x))] F(y))axdy

Let J be bounded and continuous
-1

a.e. F on [0, 1]. If (4) is satisfied

and o2 > 0, then

Theorem 1.

L
G(I.n" -u) —N(0, ¢2) as n > = *
Proof: Let

1
fO J(t)dt = ¢, and

1
Y (u) =, J(t)dt - c(l - v,
18

Note that, ¥(0) = ¥(1) = 0 and ¥'(u) =
¢ - J(u). We have
u = f:o Y((F(x)dx + ¢ f:ox dF(x), and

n

n .
Lo? = SOOEED) - WEx() * 5 I x(0)
n-1 . n
= I ‘P(%) (x(i+1) - x(i)) + %ix(i)
1
= J7 W(Ey(x))dx + ¢ Jo x dFp(x).
Therefore,

A 1%, Tl ) - Fe) - e () - Feolax (5) ®

By the Mean-Value Theorem,
¥(Fy(x)) - ¥F(x)) =
Fy(x), - F(x))(¥ (F(X))+ ME,(x) - F(x))
where A (x) >0 as x > 0.
Hence,
/o (L' - W) = h S ( [I‘:n(x') - F(x)]-
J(Fx)) - MEy(x) - F(x))dx (6)
Now,
E(/n /o [F(x) - F(x) lax < )
/o I (E(Fy(x)) - P(x))? )2 ax
<2 (FE) U-F(x))Zax < ®by (4).
Hence,
/a o By - Fx) ax = 0p(1)

Moreover, by the Glivenko—Cantelli Theorem,

as n -+ o

Sup | FAn(x) - F(x)|»pl, 0. |

-0 < X < o N
Therefore,
BT E® -FONE® -Faax 20 ()

From (6) and (7) it follows that /H(Ln" -q) &
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is asymptotically distributed as:

z=- /i (B(x) - F&)I(£(x))ax (8)
1 n
= -— I /__(Hj(x) - F(x))J(F(x))dx
Vn 1
where

0, for x <xj
Hj(x) =

1, for x > xj
By the Central Limit Theorem, Z is asympto-
tically nomally distributed with mean 0 and
variance O
on the extreme
(4) may be

If J puts no weight
observations, then the condition

dropped,
-1 -1
Iet £=F "(a) andn=F "(B), 0 <a < B 1.

Let J be bounded and continuous
a.e. F'l on [0,1] , such that

Theorem 2.

J(u) =0 for 0 < w<aand B < u <1,

If £ and n are uniquely defined and o?
then

>0’

A - w BN, o) asn o+ -

Proof: We may substitute £ and n for the

lower and upper limits, respectively, of the
integrals in the definitions of M and 02.
With the
convergence of (7) holds without condition

(4).

Theorem 2 is useful .in establishing the

these substitutions asymptotic

asymptotic distribution of an L-estimate,
such as the trimmed mean.
where

then we may substitute for (4)

If J is Lipschitz of order a ,
0 <a <],

the weaker condition that

LF@) (-F6)) (3D ax < o

Let J be bounded and continuous
a.e. F_l on [0,1] . If J is Lipschitz of
order & (0 < a< 1), (9) holds and o° > 0,
then:

Theorem 3.

/n(Ly" - u) L. N0, 62) asn +
Proof: From (10) it follows that
2 (F&)) (1-F(x)) d x < «.

From the

Lipschitz property of J we have
(It =3) = =/ (7, [Eat) - Fx)) |
- (10
(J(F(x)) + 0 (|Eq(x) - F(x) la:[dx

Now,

Hence, E| X, | <= - (5) and

E(vn f°_°°° |Fn(x) - F(x) |1*%x) (11)
- Lta
<A “E(ﬁn(x) - Fx))2| 2 dx
‘ 1+a

=/n%/2 2 (F(x) (1-F(x)) 2 ax
+ 0asn+>w

Therefore, /_rT(Ln" - M) is asymptotically
distributed as,

/(7 (F(x) - Fy(x))I(F(x))dx

2.2. Variable Distributions
Let Xl, Xz, ceas Xn be independent
random variables with c.d.f. Fl’ FZ' cees Fn
respectively. Let X(l) < ees ix(n) denote
the ordered sample values. Let
. 1n
Fa(x) = n I Fj(x)

i=l

We assume that f‘n(x) tends to a limiting

distribution F(x), say, for each x as n + =,

Since both i“n(x) and F(x) are non-
decreasing in x, the convergence is uniform
in x. Let
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Hy(x) = % H; (x)

-3

be the sample cdf where Hi(x) is defined
in (8). Clearly, E(ﬁn(x) = Fn(x). It
follows from the strong law of large nuvbers

that as n » =,
H,(x) - Fy(x) Pl o
and so

H,(X) - IT“n(x) wpl for each x.

Since ﬁn(x), f“n(x) and f?(x) are non-

decreasing in x, the convergence is uniform

in x. Hence,

supIHn(}:) - ﬁ’n(x)l wpl, g (11)

-0 <X < o
and

supIHn(x) - F(x) 'wpl 0 asn » .
-0 < X< ®

We now need the following assumptions:

Assumption 1. There exists a positive number

N, such that, for sufficiently large n,

/7 |F,(x) - F(x)|dx <N -
Assumption 2. ‘'There exists a function Q and
b < 1) such
that, 0 < Qx) < 1, Qb(x) is integrable
F (x) <
2 . n2
Q°(x) for x < -a and 1 - Fn(X)i Q" (x)

for x > a.

positive numbers a and b (0 <

and for sufficiently large n,

it follows that there

exists a positive nurmber M, such that

From assumption 2,

(e ]

57 ((Bp(x)) (1 - Fy(x))

00

N =

dx <M
for sufficiently largeln and that

I (Fx) (1-F(x))2 dx < o -

20
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From assumptions (1) and (2) we now have

E(A /2| Hy(x) - F(x)|dx </n
| 1
/2 (B(H,(x) - F(x))2)2 ax

ln
<A | FIEE 0FG) -
n~1

1
(Fo(x) - F(x))ZJZ dx
n 1
<I, L%f Fj (x) (l-Fi(x)]z dx +

A2 |Fa(x) - Flx) [dx
| 1
<17 (Fp(x) (1 - Fx))? ax +
a0 |Fa(x) - Fx) |dx
<M + N for sufficiently large n.

Assumption 3. As n » « ,

/T (Fx) - By(x)) J(F(x))dx > ¢
for same constant ¢, such that -« < ¢ < = -

Let

=
i

/7 x J(E(x))dF(x)

2, (F))ax + ¢ /7 x dF(x),
and 1

n
(/ J(u)au)xi
izl

n

3
=2

i

- M3

= /7 b Hy(x))dx+e 7 x df(x), and

<o

I H(x) - F(x))JI(F(x))dx

N:
n
[}

il

n o . -
/ (H; (x) - Fj(x))J(F(x))ax +
1

I

v/

o]

Il (F(x) - Epl(x))T(F(x))dx



»

The variance of the ith term in the above

ssummation is equal to

012.. =0T J(F(x))J(F(y)) (min(Fj(x),

Fi(y)) - Fj(x)F;(y))dxdy

Corresponding to (6), we have:
ALy = ¥) = = /o Lo, () - Fx)

(J(F(x)) - Hy(x) - F(x))dx (12)

From (11) and assumption 2, it follows
/I-‘I—(Ln" -u) is asymptotically equiva-

’lent to

~

Z, which in turn is asymptotically

distributed as

n ~
- Lz 7 (H(x) - F(x))J(F(x))dx + ¢
el 1

in view of assumption 3. Let

R P (x) |T(F(x)) |dx and

n
-

|%|>a

Y;

57 (Hi(x) - Fj(x))J(F(x))dx

[ (B (x) - Fj(x))J(F(x))dx +
| x|za

S (H (x)-F; (x))J(F(x) )dx .
|x|<a

As Qb(x) is integrable and J is bounded,

we have R < « ., Now,
2 24 %
v, PP [ 7 IH 0 - B0 |[3EE) &0” +
¢« - |x|>a *
2
CrolH 0 - By 0] [HEE) a°]
|x|<a 2
2 2 b
2.1 £-1 |H,(x) - F.(x] .
PR A PwliFax ¢
- |x|<a Q% (x)
2
- b
O 3EE) e |
|x|<a
r 2 2
v = -1 (H, (x)-F, (x}) .
T emP s i Pwlsrmlax +s

| A

[x|>a Q" (x)

Where,
2 2

21 z
s=2R° (s |3Fm |axP.

X|< a
Hence,

2 2
-1 Fi (x) (l"Fi (x})

Ely. 1< erP g
T |

QP (x) |3 (F (x) |dx+s
x|>a

0% ()
2

£
< @RP

;P IEx) |ax + s
|x|>a

for sufficiently large n, by assumption 2,
2 2
— _1 —_
<2® TR+s

From (13), it

condition for the GCentral Limit Theorem is

is seen that the Liapounov's

satisfied for the sun (12) if as n + .

n
1 -
216°+5° 50 (1)
n i
1
for some positive nurmber 0. Therefore,
/n (Ln" - u ) is asymptotically normally

distributed. Thus, we have:

Let J be bounded and continuous
If Fn(x) + F(x) for

2 and 3 are

Theorem 4.
aae- F-l Ol’l [Obl] .
each x and assumptions 1,
satisfied and (14) holds, then
—_ - L .
vn (L, = n) ¥ N(c, 62)
as n-> o

The analogue of Theorem 2 for wvariable

distributions is given below:

Let J be bounded and continuous
a.e. F1 on (o, B ) such that

Theorem 5.

J() =0, for 0 <u <a and B <uc< 1.

If ﬁn(x) - F(x) for each x, the ath and
th quantiles of ﬁ(x) are uniquely defined,
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assumptions 1, 2 and 3 are satisfied .and
(14) holds, then vh(L " - i) > N, &%)

as n > o -

3. Application
‘ Consider the linear model:
Yi =a +bx; + tj, i=1, ...n
Assume that

in this model, ti are iid F(.)

where F(.) is assumed symmetric and
absolutely continuous. Padua (1986), gave
the following robust estimate of b:
o Yi-y,
b* = median —l—1_ (14)
o X. - X,
i,JjeR j i

where R is the set of subscripts chosen from
(1, 2,

having no component

n) taken two at a time and

in common. In other

words, pair off the data points and then for

~

LRI b
. 1 m
say. Compute for the median of these slopes.
(ne possible modification of (14) is to

each pair compute the slopes b

consider estimators of the form:

Ly = (15)

m o)
Z Cibci
1

are and
The

independent

where ci constants

b <

(1) -
b(m) . slopes
provide m
the

normality of the estimator (15) follows from

Py < P = s
bl' b2'

¢ s 0y b
m
estimates of b and so asymptotic

our previous discussions.
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